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Abstract

An eight!node C9 shell element for _nite elasticÐplastic deformations with anisotropies is developed[ It
combines the advantages of an isoparametric description of geometry and deformation\ the application of
tensors in Cartesian components\ and a real and e}ective plane stress description with three displacement
and three director degrees!of!freedom at each node[ In Part I of the paper the shell theory including the
kinematics\ the variational principle\ the application of Lagrange multipliers with their condensation on the
element level and a comparative study of various assumed strain techniques were presented and the results
of convergence tests given[

In this paper\ we consider the constitutive equations for large elastic and large plastic strains accounting
for initial and induced anisotropies and the corresponding thermodynamics[ Then we investigate the return
algorithm for _nite strains and the implementation of the element procedure including sti}ness matrix and
residual force vector[ Finally\ we present the results of extended numerical applications and a comparison
with FE solutions published in the literature\ as far as such are available[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

According to the kinematics of _nite elastoplasticity presented in Schieck and Stumpf "0884#
and Part I of this paper the total deformation gradient can be decomposed into Lagrangian
and Eulerian\ respectively\ elastic and plastic stretches and a uniquely de_ned rotation tensor[
Correspondingly\ the total stretch can be decomposed uniquely into Lagrangian and Eulerian\
respectively\ elastic and plastic stretches[ From this result it follows that for the rate formulation
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of the constitutive equations\ we can choose either the time derivative within a Lagrangian
description or the corotational rate formulation within the Eulerian picture\ where the corotational
rate is constructed with the spin of the uniquely de_ned rotation tensor[ In Part I we also derived
the kinematics of _nite elastoplasticity for an additional reference con_guration[ To develop a
shell _nite element for large elastic and large plastic strains and arbitrary anisotropies we can then
choose as _rst reference con_guration the undeformed shell and as second reference con_guration
a ~at rectangular plate\ which enables us to apply the plane stress assumption for the shell element[
As a basis for the derivation of the shell element a Lagrangian virtual work principle is formulated\
where the transverse normality constraint and the condition of isochoric deformation are intro!
duced by Lagrange multipliers\ which can be condensed on the element level[ Assumed strain
techniques to avoid the membrane locking were proposed and compared with methods published
in the literature[

This paper is organized as follows] in Section 1 we present the thermodynamically based
elasticÐplastic constitutive model for large elastic and large plastic strains with initial and induced
anisotropies[ In Section 2 the elasticÐplastic return algorithm for _nite strains is established and in
Section 3 we consider the numerical implementation[ In Section 4 a comprehensive set of numerical
examples is provided[ They illustrate the performance of the proposed eight!node shell _nite
element for a wide variety of engineering problems with the strain localization and necking of a
plane specimen under tension\ the elasticÐplastic deformation of a plate with bending strain
localization at the four corner zones\ the elasticÐplastic deformation of the Scordelis!Lo roof with
bending strain localization in two zones of the shell and the elasticÐplastic buckling of a cylinder
under torsion exhibiting a signi_cant in~uence of the ratio between kinematic and isotropic
hardening[

1[ Constitutive model

According to eqn ðI"1[3#Ł "I refers to Part I# the total deformation gradient F can be decomposed
multiplicatively into elastic and plastic Lagrangian Ue\ Up and Eulerian Ve\ Vp\ respectively\
stretches and a uniquely de_ned rotation tensor Q]

F � QUeUp � VeVpQ\ Q � ReRp\ "1[0#

with

Ue M RpTUÞeRp � QTVeQ\ Vp � QUpQT\ "1[1#

where Re\ Rp are the elastic and plastic rotations following from the elastic and plastic deformation
gradients F e\ F p by polar decompositions[ The right and left total stretch tensors U\ V\ following
from the polar decomposition of the total deformation gradient F can be decomposed into elastic
and plastic stretches as follows

U � zFTF � zUpUe1Up\ V � zFFT � zVeVp1Ve[ "1[2#

Solving "1[2#0 with respect to Ue leads to the result that Ue is independent of the plastic rotation
Rp or any additionally introduced plastic rotation Op[ This proves the Lagrangian objectivity of
Ue[ Analogously\ solving "1[2#1 with respect to Vp shows the independence of Vp from the plastic
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rotation Rp or any additionally introduced plastic rotation Op[ Therefore\ Vp is a Eulerian objective
like V and Ve "see also Ogden\ 0873#[

The eqns "1[1# can be interpreted as follows] the Lagrangian objective elastic stretch tensor Ue

is the pull!back with Q of the Eulerian objective elastic stretch tensor Ve and the Eulerian objective
plastic stretch tensor Vp is the push!forward with Q of the Lagrangian plastic stretch tensor Up[
Therefore\ to construct objective rates for Ve and Vp we use the spin V � QþQT of the rotation
tensor Q leading to a corotational rate or Lie!type derivative with respect to Q]

Ve
9

M QUþeQT � Q
1

1t
"QTVeQ#QT � Vþe−VVe¦VeV "1[3#

and

Vp
9

M QUþpQT � Q
1

1t
"QTVpQ#QT � Vþp−VVp¦VpV "1[4#

with

V � QþQT[ "1[5#

The same objective corotational rate can be derived for all other Eulerian objective second!order
tensors[ For example\ the rate of the Cauchy stress tensor s with the back!rotated Cauchy stress
tensor s9 � QTsQ as a corresponding Lagrangian objective tensor takes the form

s
9
� Qs¾9Q

T � Q
1

1t
"QTsQ#QT � s¾−Vs¦sV[ "1[6#

In order to determine V we consider the spatial velocity gradient l � FþF−0]

l � FþF−0 � QþQT¦QUþeUe−0QT¦QUeUþpUp−0Ue−0QT

� V¦Ve
9

Ve−0¦VeVp
9

Vp−0Ve−0[ "1[7#

The additive decomposition of l into symmetric and skew!symmetric parts yields

l � d¦w � de¦dp¦we¦wp¦V\ "1[8#

where

d � 0
1
"l¦lT# � de¦dp\ "1[09#

de � 0
1
"Ve

9
Ve−0¦Ve−0Ve

9
#\ "1[00#

dp � 0
1
"VeVp

9
Vp−0Ve−0¦Ve−0Vp−0Vp

9
Ve# "1[01#

are the total\ elastic and plastic deformation rates\ respectively\ and

w � 0
1
"l−lT# � V¦we¦wp\ "1[02#
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we � 0
1
"Ve

9
Ve−0−Ve−0Ve

9
#\ "1[03#

wp � 0
1
"VeVp

9
Vp−0Ve−0−Ve−0Vp−0Vp

9
Ve# "1[04#

are the total "usually called {material|#\ elastic and plastic spins[ The spin V of the rotation tensor
Q is then obtained as

V � w−we−wp[ "1[05#

A detailed discussion of this kinematical concept and several numerical examples for elastic and
plastic deformations with various magnitudes were given in Schieck and Stumpf "0884#[ Within
this concept the elastic deformation rate de is a linear function of the rate of the elastic stretch Ve

9

and the plastic deformation rate dp is a linear function of the rate of the plastic stretch Vp
9

[ The
result is a formally simple structure of the thermodynamically based constitutive equations\ which
are\ therefore\ easily accessible to engineers[

In the most general case\ the free energy c per unit mass depends on the elastic stretch Ve\ the
plastic stretch Vp including its history\ a set a of initial anisotropy tensors and the absolute
temperature u[ In the back!rotated con_guration "the actual con_guration back!rotated with Q#
with Lagrangian objective variables it depends on the elastic stretch Ue\ the plastic stretch Up

including its history\ a set A of the back!rotated initial anisotropy tensors "e[g[ second!order
tensors A $ A corresponding to a � QAQT $ a# and the absolute temperature u[ Therefore\ we can
postulate a free energy of the form

c � c"Ve\ Vp\ a\ u# � c"Ue\ Up\ A\ u#[ "1[06#

However\ the free energy does not depend on actual anisotropy tensors as independent variables\
because one can show that their rates are expressible through the rates of the independent variables
in eqn "1[06#[ One should also note that the free energy is a potential only with respect to the
elastic stretch\ whereas its dependence on the plastic stretch may be strongly path!dependent[

Analogously\ the yield function f for rate!insensitive plasticity depends on the same set of free
variables\

f � f"Ve\ Vp\ a\ u# � f"Ue\ Up\ A\ u# 6
�9\ yielding

³9\ no yielding
[ "1[07#

Alternative formulations for the yield function using kinetic instead of kinematic variables will be
considered later[

From "1[06#1 the rate of the free energy follows as

c¾ �
1c

1Ue
= Uþe¦

1c

1Up
= Uþp¦

1c

1u
u¾[ "1[08#

If the free energy depends on plastic anisotropies Ap the derivative 1c:1Up must be calculated as
1c:1Up � 1c:1Up

=Ap�const[¦1c:1Ap
=Up�const[ = 1Ap:1Up\ using the evolution law for the plastic aniso!

tropies[ Then the plastic anisotropies do not appear in eqn "1[06# as independent variables[
However\ if one treats them as independent variables\ one can derive the evolution law for them
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from the corresponding associated ~ow rule\ which shows that the plastic anisotropies do not
appear in the free energy as independent variables[ By push!forward of eqn "1[08# with the rotation
tensor Q one gets

c¾ �
1c

1Ve
= Ve

9
¦

1c

1Vp
= Vp

9
¦

1c

1u
u¾[ "1[19#

Using computer algebra "e[g[ Mathematics\ Maple\ etc[# one can solve eqns "1[00# and "1[01# with
respect to Ve

9
and Vp

9
obtaining them as linear functions of de and dp[ These functions will be

denoted by 1Ve
9

:1de and 1Vp
9

:1dp in the following considerations[ They allow us to rewrite eqn
"1[19# as

c¾ �
1c¾

1de
= de¦

1c¾

1dp
= dp¦

1c

1u
u¾\ "1[10#

where 1c¾ :1de and 1c¾ :1dp stand for

1c¾

1de
�

1c

1Ve
=
1Ve

9

1de
and

1c¾

1dp
�

1c

1Vp
=
1Vp

9

1dp
[ "1[11#

Inserting eqn "1[10# into the localized ClausiusÐDuhem inequality

r"hu¾¦c¾ #−s = d¦
0
u

9u = q ¾ 9 "1[12#

results in

r 0hu¾¦
1c¾

1de
= de¦

1c¾

1dp
= dp¦

1c

1u
u¾1−s ="de¦dp#¦

0
u

9u = q ¾ 9[ "1[13#

In these equations r denotes the actual mass density\ h the entropy per unit mass\ s the "true#
Cauchy stress tensor\ 9"=# the gradient of "=# in the actual con_guration and q the heat ~ux[
Following now the common interpretation given in more detailed form in Le and Stumpf "0882#
and Acharya and Shawki "0885#\ one obtains

h � −
1c

1u
\ "entropy# "1[14#

−q = 9u − 9\ "direction of heat ~ux# "1[15#

s � r
1c¾

1de
\ "definition of true stress# "1[16#

Dp M 0s−r
1c¾

1dp1 = dp − 9 "plastic dissipation#[ "1[17#

The plastic dissipation Dp according to "1[17# suggests to de_ne a {plastic stress|
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sp M s−r
1c¾

1dp
� s−

r

r9

a "1[18#

power!conjugate to dp\ where

a M r9

1c¾

1dp
"1[29#

is an {internal stress|\ to be interpreted below as the back!stress in the yield condition\ and r9

denotes the mass density in the reference con_guration[ Comparing the plastic dissipation "1[17#
with the plastic dissipation resulting from theories with Lie!derivatives "e[g[ Le and Stumpf\ 0882
or Miehe\ 0887a#\ one can prove their equivalence[

According to common arguments "for small strains Sedow\ 0861\ gave an extended derivation#\
the yield function f should be formulated using the {plastic stress| of the plastic dissipation
inequality\ if f has to be formulated in the stress space[ If\ analogously to the free energy c\ the
yield function f is referred to the unit mass\ it is reasonable to use Kirchho} stress tensors

t �
r9

r
s\ tp �

r9

r
sp � t−a[ "1[20#

Additionally\ in most cases the yield function f should depend on a set C of internal variables "of
various tensorial types# that depend on the plastic stretch Vp including its history and on the set a
of initial anisotropies ðaccording to the remarks below eqn "1[08#\ deformation!dependent "e[g[
plastic# anisotropies are not independent variablesŁ[ Accounting also for the temperature u\ this
results in

f � f"tp\ C\ u# � f"t−a\ C\ u# 6
�9\ yielding

³9\ no yielding
[ "1[21#

The yield function f can also be formulated in terms of variables referred to the back!rotated\
Lagrangian objective con_guration\ using back!rotated stress tensors t9 � QTtQ\ a9 � QTaQ\
tp

9 � QTtpQ and the set B of back!rotated internal variables depending on the plastic deformation
Up and the set A of initial anisotropies]

f � f"tp
9\ B\ u# � f"t9−a9\ B\ u# 6

�9\ yielding

³9\ no yielding
[ "1[22#

The formulae "1[21# and "1[22# of the yield function are equivalent to "1[07#\ because the sets of
independent parameters in these formulations can be transformed one to the other[

The associated ~ow rule is then obtained from the principle of maximum plastic dissipation as

dp � l¾
1f

1tp
� l¾

1f

1t
\ l¾ − 9\ l¾f � 9[ "1[23#

In the present paper we assume that the elastic and plastic contributions to the free energy are
uncoupled\ i[e[
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11c

1Ue
& 1Up

�
11c

1Ve
& 1Vp

� 9\ "1[24#

which means that we assume isotropy in the elastic range of deformation[ This holds approximately
for many polycrystalline materials such as most metal alloys\ for which Young|s moduli are known
to be macroscopically constant and independent of the deformation history[ Equation "1[24# is
equivalent to the assumption that the Kirchho} stress depends only on the elastic deformation\

t � t"Ve# or t9 � QTtQ � t9"Ue#[ "1[25#

From the above assumptions\ from eqn "1[16# and the de_nition of the corotational rate "1[3#Ð
"1[6#\ one obtains the incremental elastic constitutive equations in the Eulerian and Langrangian
picture

t
9
� Ce = de\ t¾9 � Ce

9 = De\ "1[26#

where

Ce � r9 0
1Ve

9

1de 1
T

=
11c

1Ve
& 1Ve

=
1Ve

9

1de
\ Ce

9 � r9 0
1Uþe

1De1
T

=
11c

1Ue
& 1Ue

=
1Uþe

1De
"1[27#

are the tangent elasticity tensors of fourth!order and

De � QTdeQ � 0
1
"UþeUe−0¦Ue−0Uþe# "1[28#

is the back!rotated elastic deformation rate[ With r9 we denote the mass density in the undeformed
con_guration and with = the scalar product of tensors with double contraction of indices\ if index
notation is applied[ For large elastic strains the tangent elasticity tensors Ce and Ce

9 according to
"1[27# depend on the elastic stretch tensors Ve and Ue\ respectively[

Introducing the consistent elasticÐplastic tangent operators Cep and Cep
9 \ the elasticÐplastic rate

constitutive equations are obtained in the actual con_guration as

t
9
� Cep = d\ "1[39#

and in the back!rotated con_guration

t¾9 � Cep
9 = D\ "1[30#

where in the latter case

D � QTdQ � De¦Dp\ "1[31#

De � QTdeQ � 0
1
"UþeUe−0¦Ue−0Uþe#\

Dp � QTdpQ � 0
1
"UeUþpUp−0Ue−0¦Ue−0Up−0UþpUe# "1[32#

are the back!rotated total\ elastic and plastic deformation rates[ The tangent operators Cep and
Cep

9 are derived from the consistency condition f¾ � 9\ the ~ow rule "1[23# and the incremental
elastic constitutive equations "1[26# as
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Cep � Ce−
Ce =

1f

1t
&

1f

1t
= Ce

1f

1t
= Ce =

1f

1t
−

1f¾

1dp
=
1f

1t

\ "1[33#

Cep
9 � Ce

9−
Ce

9 =
1f

1t9

&
1f

1t9

= Ce
9

1f

1t9

= Ce
9 =

1f

1t9

−
1f¾

1Dp
=
1f

1t9

[ "1[34#

Due to eqn "1[21#\ we have

1f

1t
�

1f

1tp
\

1f

1t9

�
1f

1tp
9

"1[35#

and

1f¾

1dp
�

1f

1a
=
1a¾

1dp
¦s

i

1f

1bi

1b¾i

1dp
\

1f

1Dp
�

1f

1a9

=
1a¾9

1Dp
¦s

i

1f

1Bi

1Bþi

1Dp
\ "1[36#

where bi\ Bi are elements of the sets C and B of internal variables depending on Vp and Up\
respectively[ In the case of von Mises yield condition with combined isotropic and kinematic
hardening and fully three!dimensional description\ the denominator of eqns "1[33#\ "1[34# become
1G¦h\ where G is the shear modulus and h the total hardening modulus[ In the same case but for
plane stress\ only −1f¾ :1dp = 1f:1t or −1f¾ :1Dp = 1f:1t9 in the denominators of "1[33#\ "1[34# can
be replaced by ¦h[

In the numerical examples the isotropic elastic constitutive equation is chosen according to
Anand "0868\ 0875# as

t � C = ln"Ve#\ t9 � C = ln"Ue#\ C � const[ "1[37#

Within moderately large elastic strains >ln"Ve#> ¾ 09) one can show that within a relative error
of about 0) we have

Ce � Ce
9 ¼ C[ "1[38#

For larger elastic strains one has to calculate

Ce � C =
1"ln Ve#9

1de
\ Ce

9 � C =
1"ln Ue#=

1De
"1[49#

exactly[ Details of this analysis can be found in Section 5 and in the Appendix of Schieck and
Stumpf "0884#[

In the numerical examples of this paper we have taken von Mises yield condition and associated
~ow rule with combined isotropic and kinematic hardening[ For plane stress one obtains in terms
of physical components

f � zdev"t−a# = dev"t−a#−z
1
2
ty
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� z
1
2
"z"t00−a00#1¦"t11−a11#1−"t00−a00#"t11−a11#

−"t00¦t11−1a00−1a11#"a00¦a11#¦2"t01−a01#1−ty# ¾ 9\ "1[40#

where ty is the uniaxial average yield stress[ Of course\ in eqn "1[40# components of t9 and a9 can
be used instead of t and a[ The isotropic and kinematic hardening rules are chosen as

t¾y � z
2
1
"0−b#h>dp> and a

9
� bhdp\ "1[41#

where b is the ratio of kinematic hardening\

h �
1
2

EET

E−ET

"1[42#

is the hardening modulus with E as Young|s modulus and ET as tangent modulus\ and
>dp> � z"dp

00#1¦"dp
11#1¦1"dp

01#1¦"dp
00¦dp

11#1 � >Dp> is the norm of dp or Dp calculated in the
three!dimensional space[

The constitutive equations can be formulated analogously also in the back!rotated con_guration
de_ned by QR according to eqn ðI"1[01#2Ł[ There\ QR is the composition of the rotation Q due to
eqn "1[2# and the rotation of the mapping from the _ctitious ~at Cartesian reference con_guration
into the undeformed con_guration[ In Fig[ 1I\ this back!rotated con_guration is depicted as B	�[
Using Ue

R and Up
R due to eqns ðI"1[01#0\1Ł\ eqns "1[26#1\ "1[28#\ "1[30#Ð"1[32#\ "1[34# and "1[37# lead

to

t¾R � Ce
RDe

R � Cep
R = DR\ "1[44#

DR � QT
RdQR � De

R¦Dp
R\ "1[45#

De
R � QT

RdeQR � 0
1
"Uþe

RUe−0
R ¦Ue−0

R Uþe
R#\ "1[46#

Dp
R � QT

RdpQR � 0
1
"Ue

RUþp
RUp−0

R Ue−0
R ¦Ue−0

R Up−0
R Uþp

RUe
R#\ "1[47#

tR � C ln"Ue
R#\ "1[48#

where

Cep
R � Ce

R−
Ce

R =
1f

1tR

&
1f

1tR

= Ce
R

1f

1tR

= Ce
R =

1f

1tR

−
1f¾

1Dp
R

=
1f

1tR

"1[59#

is obtained analogously to eqns "1[38# and "1[49#[ The latter back!rotated con_guration enables a
plane stress description of the material in arbitrarily shaped shells using tensors in Cartesian
components that refer to local\ material!attached Cartesian coordinate systems[ Furthermore\ in
this case the rate!type equations\ e[g[ for t¾R and the elasticÐplastic tangent operator Cep

R become
formally identical to the expressions of the theory of small strains[

In the formulation of the virtual work principle and in the sti}ness matrix we have applied the
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second PiolaÐKirchho} stress SR corresponding to the back!rotated Kirchho} stress tR[ In eqn
ðI"1[06#Ł SR is obtained as

SR � Up−0
R Ue−0

R tRUe−0
R Up−0

R [ "1[50#

Its rate is then

SþR � Up−0
R Ue−0

R t¾RUe−0
R Up−0

R ¦
1

1t
"Up−0

R Ue−0
R #tRUe−0

R Up−0
R

¦Up−0
R Ue−0

R tR

1

1t
"Ue−0

R Up−0
R #

� Up−0
R Ue−0

R "t¾R−"DR¦We
R¦Wp

R#tR−tR"DR−We
R−Wp

R##Ue−0
R Up−0

R \ "1[51#

where

We
R � QT

RweQR � 0
1
"U¾ e

RUe−0
R −Ue−0

R Uþe
R# "1[52#

and

Wp
R � QT

RwpQR � 0
1
"Ue

RUþp
RUp−0

R Ue−0
R −Ue−0

R Up−0
R Uþp

RUe
R# "1[53#

are the back!rotated elastic and plastic spin tensors\ respectively[ Equation "1[46# and "1[47# are
linear relations between the components of De

R\ Uþe
R and Dp

R\ Uþp
R[ They can be solved obtaining

Uþe
R and Uþp

R as linear functions of De
R and Dp

R\ From these one can compute We
R and Wp

R[ Then
De

R can be obtained from eqn "1[44# as De
R � Ce−0

R = Cep
R = DR and Dp

R as Dp
R � DR−De

R[ If the elastic
strains are less than about 09)\ then in analogy to eqn "1[38# the approximation Ce

R ¼ C can be
used and the elastic spin We

R can be omitted as well[ Inserting these relations together with eqn
"1[44# into eqn "1[51# and using computer algebra one obtains immediately the components of the
material tensor C
ep

R of the rate constitutive equation

SþR � C
ep
R = DR[ "1[54#

The fourth!order tensor C
ep
R does not have the usual symmetries\ if the elastic strains become large]

C
ep
Rijkl � C
ep

Rklij[ Solving eqn ðI"1[10#0Ł with respect to DR and inserting the results into eqn "1[54#
"using computer algebra#\ one obtains the components of C	ep

R that appear in the rate constitutive
equation

SþR � C	ep
R = EþR[ "1[55#

Again\ C	ep
R is no longer symmetric for large elastic strains] C	ep

Rijkl � C	ep
Rklij[ The asymmetry of the

elasticÐplastic tangent operator correlating the rate of the Green strains with the rate of the second
PiolaÐKirchho} stresses was _rstly shown for large strains in Schieck and Stumpf "0886#[ There it
was proved furthermore\ that also within the model of elastoplasticity using Lie derivatives the
elasticÐplastic tangent operator is non!symmetric\ in general[ For small elastic strains symmetry is
reobtained approximately[
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2[ ElasticÐplastic return algorithm for _nite strains

In this section we will outline\ how the new stress state can be obtained from the former one
after a deformation increment[ Furthermore\ we will show which of the previous formulae have to
be programmed[

Within this section the subscript old means the corresponding value obtained at the end of the
converged NewtonÐRaphson iteration of the previous load step[ Analogously\ quantities without
the subscript old mean the actual values in the current iteration cycle\ although one does not know\
whether convergence will be achieved[ In the case when convergence is not yet achieved\ the new
values should not replace the old ones[ The subscript trial refers to an assumed purely elastic
incremental response[ All computations are performed in the back!rotated\ Lagrangian type
invariant con_guration B	� as depicted in Fig[ 1I[ Therefore\ the shell theory can be formulated
using plane stresses[ If the shell is su.ciently thin\ transverse shear stresses and strains can be
neglected[ The stretch in the thickness direction then depends entirely on the in!plane stretch
according to the assumption of isochoric or approximately isochoric deformation as in the case of
metal plasticity with small elastic strains[

The following procedure has to be evaluated in each shell layer "�integration point in the
thickness direction# of the Gaussian integration points in each NewtonÐRaphson iteration cycle[

After the Green strain ER has been determined in the material point "�layer in the Gaussian
integration point# according to eqn ðI"2[02#Ł\ the trial elastic Green strain Ee

R trial is obtained from

Ee
R trial � Up−0

R old"ER−Ep
R old#Up−0

R old[ "2[0#

This equation can be derived from eqn ðI"1[12#Ł solving it for Ue
R and applying the relation

U1 � 0¦1E[
From Ep

R trial the log trial strain He
R trial is determined as

He
R trial �

0
1
ln"0 ¦1Ee

R trial#

¼ Ee
R trial−Ee

R trialE
e
R trial "if >Ee

R trial> ³ 09−3#[ "2[1#

The application of "2[1#1 for strains less than 09−3 ensures an accuracy of more than eight signi_cant
decimal digits[ With the log "Hencky# strain the trial stress yields for Anand material ðeqns "1[37#\
"1[59#Ł

tR trial � C = He
R trial\ "2[2#

where C is the constant isotropic linear elasticity tensor[ If\ due to the yield function "1[40#\ tR trial

is in the elastic range\ i[e[ f ¾ 9\ no return algorithm must be performed and the actual stress tR

is equal to the trial stress[
If tR trial lies in the inelastic range\ i[e[ f × 9\ one has to distinguish two cases] either the previous

load step has been elastic\ or it has been elastoplastic[ If the previous load step has been elastic\
the stress tR that lies on the yield surface must be determined[ For moderately large elastic strains
"less than about 209)# this can easily be done by computing the incremental trial log strain

DHe
R trial � He

R trial−He
R old "2[3#

and then determining the elastic ratio be such that
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tR � C ="He
R old¦beDHe

R trial# "2[4#

satis_es the yield condition f � 9[ In the case of von Mises yield condition and plane stress this is
equivalent to

"t00−a00#1¦"t11−a11#1−"t00−a00#"t11−a11#

−"t00¦t11−1a00−1a11#"a00¦a11#¦2"t01−a01#1−t1
y � 9\ "2[5#

what leads to a quadratic equation for be[ The trial incremental elastoplastic log strains then
become

DHep
R trial �"0−be#DHe

R trial[ "2[6#

If the previous load step has been plastic\ then be � 9\ DHep
R trial � DHe

R trial and the return algorithm
starts with tR � tR old[

For very large elastic strains the outlined procedure is only a rough approximation\ because
then the log strains can no longer be superposed or decomposed additively "see Schieck and
Stumpf\ 0882#\ what is the basic assumption for eqn "2[3#[ Then the incremental trial log strain
must be determined from the multiplicative decomposition

Ue1
R trial � exp"1He

R trial# � Ue
R old exp"1DHe

R trial#Ue
R old\ "2[7#

obtained analogously to eqn ðI"1[12#Ł[ Then\ however\ the trail incremental elasticÐplastic log
strain tensor DHep

R trial can be linearly separated from DHe
R trial according to eqn "2[6#\ because

DHe
R trial and DHep

R trial are coaxial having the same principal directions[ But in eqn "2[4# the elastic
strains resulting from He

R old and beDHe
R trial must again be determined by a multiplicative super!

position analogously to eqn "2[7#[
The next step is to separate DHep

R trial into n equal pieces of maximal moderate size\ e[g[

B
0
n

DHep
R trial B¾

ty

09E
\ "2[8#

where ty is the average uniaxial yield stress and E the Young|s modulus[ Of course\ instead of the
factor 09 another su.ciently large number can be chosen[ The linear separation of DHep

R trial into
equal pieces is exact due to their coaxiality[ Then for each of the n pieces one has to determine l

such that " for i � 9 to n−0# the quantities

tR"i¦0# M tR"i#¦Ce
R =

0
n

DHep
R trial−lCe

R =
1f

1tR"i#

\ "2[09#

aR"i¦0# M aR"i#¦lbh
1f

1tR"i#

\ "2[00#

ty"i¦0# M ty"i#¦lz
2
1
"0−b#h "2[01#

satisfy the yield condition f � 9 with b and h given in eqns "1[41# and "1[42#[ For the von Mises
yield condition and plane stresses this is equivalent to eqn "2[5#\ what yields a quadratic equation
for l[
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If in the actual NewtonÐRaphson iteration cycle no convergence is obtained\ all quantities with
the subscript old must be kept and the values for aR and ty must be reset to the values from the
end of the previous converged load step[

If with the actual NewtonÐRaphson iteration cycle convergence is achieved\ He
R old\ Up

R old and
Ep

R old have to be updated as follows]

He
R old M He

R\ Up
R old M Up

R\ Ep
R old M Ep

R[ "2[02#

From eqn "2[2# one gets

He
R � C−0 = tR[ "2[03#

Up
R is obtained by introducing eqn ðI"1[12#Ł into Ue

RU1
RUe

R\ yielding

Ue
RU1

RUe
R � Ue

RUp
RUe1

R Up
RUe

R �"Ue
RUp

RUe
R#1\ "2[04#

where Ue
R � exp He

R and U1
R � "0¦1ER# is computed from ER due to eqn ðI"2[02#Ł[ Solving eqn

"2[04# for Up
R we obtain

Up
R � Ue−0

R zUe
RU1

RUe
RUe−0

R "2[05#

and therefore\

Ep
R � 0

1
"Up1

R −0#[ "2[06#

Since all tensors refer to the material!attached Cartesian reference frame "and therefore have
Cartesian components#\ all numerical tensor computations in the _nite element code can be
performed easily as standard matrix calculations[

3[ Numerical implementation

In Part I an eight!node quadrilateral arbitrarily shaped shell element with nodes at the corners
and at the mid!points of the edges has been developed[ Each node has three displacement degrees!
of!freedom and three director!di}erence degrees!of!freedom[ The corresponding shape functions
are the usual Lagrange interpolation polynomials[ They are complete up to the second!order with
incomplete contributions of the third!order[ The same shape functions are used for the Lagrange
multiplier _eld h that controls the director length[ If h is not condensed\ its nodal degree!of!
freedom is added to each node as seventh degree!of!freedom[ If h is condensed on element level\
only bi!linear shape functions with four degrees!of!freedom are used in combination with an
additional stabilization energy Wgradthick according to Section 4I[ The trial functions for the two
components of the Lagrange multiplier _eld l �"l0\ l1# are bi!linear with four degrees!of!freedom
for each component[ If these degrees!of!freedom are not condensed in the element routine\ they
are not added as eighth and ninth degree!of!freedom to the corner!nodes as it would correspond
to their physical meaning[ They are added as eighth and ninth degree!of!freedom to the mid!nodes
in such a manner that l0 is continuous in the local material!attached X1!direction and that l1 is
continuous in the local material!attached X0!direction[ The reason for this unusual implementation
is described in Section 4I[
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The element routine for the element residual force vector RFV and the element sti}ness matrix
STM is divided into nine steps described below[ The integration over the element mid!surface is
performed using nine!point Gaussian quadrature and is carried out in the _ctitious ~at reference
con_guration B� described in Section 1I[ This means that the coordinates X0 and X1 "see Section
2I# can be chosen as the local convective element coordinates and have _xed boundaries in each
element\ e[g[ "X0\ X1# $ ð−0\ 0Ł×ð−0\ 0Ł[

The _rst step is to compute gR and xR in each Gaussian integration point according to Section
2I[ There\ v is the three!dimensional mid!surface displacement vector and 9 means the gradient
with respect to the X0\ X1 coordinates of the _ctitious reference con_guration\ i[e[ the element
coordinates[ The values of the components of v have to be interpolated from the nodal values
using the above mentioned shape functions[ On the strain _eld g according to eqn ðI"2[03#1Ł the
assumed strain procedure due to Section 5I\ or due to another proposed procedure\ e[g[ according
to Bathe and Dvorkin "0875#\ has to be applied[ In eqn ðI"2[04#Ł "t−t9# is the three!dimensional
director!di}erence vector[ Uf

"9# is the _ctitious 1×1 membrane stretch tensor due to the mapping
from the _ctitious ~at reference con_guration into the real undeformed con_guration of the shell[
It can be obtained according to eqn ðI"2[05#Ł[ Uf

"0#\ also a 1×1 tensor\ has to be obtained from eqn
ðI"2[06#Ł[ Both tensors\ Uf

"9# and Uf
"0#\ may be stored permanently for each integration point of

each element in order to avoid their repeated computation[ Using computer algebra it is easy to
generate a highly e.cient program code for computing gR and xR[

In the second step\ the back!rotated Kirchho} stress tR has to be computed in each integration
point in the thickness direction over each Gaussian mid!surface integration point[ For elastoplastic
computations seven layers are used normally\ while in the case of pure elasticity two or three layers
are expected to be su.cient[ The positions of the thickness integration points are given by
coordinates z $ ð−H:1\ H:1Ł\ where H is the reference thickness given by H � h9:=t9= with h9 and
=t9= as the thickness and the director length in the undeformed con_guration\ respectively[ The
director length in the undeformed con_guration is determined by the isochoric constraint of the
mapping from the _ctitious ~at reference con_guration into the undeformed one[ This implies the
condition det"Uf

"9## =t9 = � 0[ The Green strains ER in the layers given by z are determined according
to eqn ðI"2[02#Ł as

ER � gR¦zxR[ "3[0#

Then tR can be obtained using the return algorithm described in Section 2[
In the third step\ the operators 1NR:1gR\ 1NR:1xR � 1MR:1gR and 1MR:1xR have to be

determined in each Gaussian quadrature point[ For this the elasticÐplastic tangent modulus C	ep
R

appearing in eqn "1[55# has to be computed\ which can be obtained e.ciently from Cep
R at the end

of the return algorithm\ see Sections 1 and 2[ Introducing eqns "1[55# and "3[0# into eqns ðI"3[1#Ł
and ðI"3[2#Ł one obtains

1NR

1gR

� g
H:1

−H:1

C	ep
R dz\ "3[1#

1NR

1xR

�
1MR

1gR

� g
H:1

−H:1

C	ep
R z dz\ "3[2#
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1MR

1xR

� g
H:1

−H:1

C	ep
R z1 dz[ "3[3#

The integration is performed numerically using the z!coordinates of the layers as integration points[
The fourth step is to calculate the stress resultants and stress couples NR and MR in each

Gaussian quadrature point from the Kirchho} stress SR according to eqns ðI"3[1#Ł and ðI"3[2#Ł[ SR

can be obtained from tR at the end of the return algorithm "Section 2# using eqn "1[50#[ Analogously
to the previous step\ the integration over the thickness is performed numerically using the z!
coordinates of the layers as integration points[

In the _fth step\ the virtual membrane strains digR and the virtual bending strains dixR have to
be determined in each Gaussian quadrature point[ Here di" # denotes the variation of " # due to the
variation of the i!th degree!of!freedom[ The formulae for digR and dixR can be obtained from eqns
ðI"2[07#Ł and ðI"2[08#Ł by replacing the variation symbol d by di[ Then div contains the shape
functions for the components of the displacement vector v due to the i!th degree!of!freedom in the
element\ where di9v is its gradient[ The meaning of dit and di9t is analogous to those of div and di9v\
where dit 0 di"t−t9# contains the shape function for the components of the director!di}erences due
to the i!th degree!of!freedom in the element[ Within this computation step one should not forget
to apply the assumed strain procedure of Section 5I to dig of eqn ðI"2[07#1Ł[ The same procedure
as for g in the _rst step of the element routine should be applied[

The sixth step is the assemblage of the components RFVi of the element residual force vector
RFV\

RFVi � gA

"NR = digR¦MR = dixR−P = div¦"tF�=z�9−t9F
f
=z�9# = dil¦t = di9vl¦dim = F�=z�9l

¦dih"det F"2×2#
�=z�9−det Ff"2×2#

=z�9 #¦h tr"diF
"2×2#
�=z�9F"2×2#−0

�=z�9 # det F"2×2#
�=z�9 # dA\ "3[4#

where the integration over the area A of the element is performed in the _ctitious ~at reference
con_guration B�\ and P denotes the vector of dead loads per unit area of the mid!surface in this
con_guration[

The _rst line in eqn "3[4# is due to the internal virtual work IVW eqn ðI"3[3#1Ł and dead loading[
The second\ third and fourth lines are due to the extension terms XVW in the virtual work principle
as they are established in eqn ðI"3[4#Ł\ where also the meaning of F�=z�9\ Ff

=z�9\ F"2×2#
�=z�9 and Ff"2×2#

=z�9

are explained in detail[ In analogy to step _ve\ here di" # means the variation of " # due to the
variation of the i!th degree!of!freedom in the element[ Thus\ dil and dih are the shape functions
for l and h associated with the i!th degree!of!freedom[ If the i!th degree!of!freedom does not
correspond to l or h\ then dil and dih\ respectively\ are zero[ In the case of the condensation of the
degrees!of!freedom of the Lagrange multipliers l and h\ one must add −diWshear and −diWbulk to
RFVi with Wshear and Wbulk due to Section 3I\ e[g[

RFVi M RFVi−gA 6
0[1
GH

l = Uf1
"9#dil=t9 =1¦

h

EbH
dih7 dA[ "3[5#

For pressure loads p per unit area of the actual mid!surface and the terms corresponding to eqn
ðI"3[08#Ł must be added to RFVi\ replacing there dv by div]
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RFVi M RFVi¦gA

p 0
1x

1X0bz�9

×
1x

1X1bz�91 = div dA\ "3[6#

where 1x:1X0
=z�9 and 1x:1X1

=z�9 are the actual convective tangent vectors\ which can be found in
the _rst two columns of F�=z�9 "see Section 4I#[

In step seven\ the material part of the sti}ness matrix STM due to the material part of the
incremental virtual work DIVW "eqn ðI"3[01#Ł# is established as

STMij � gA 6digR = 0
1NR

1gR

= djgR¦
1NR

1xR

= djxR1
¦dixR = 0

1MR

1gR

= djgR¦
1MR

1xR

= djxR17 dA[ "3[7#

Since\ according to Section 1\ C	ep
R is not symmetric\ also the operators 1NR:1gR\

1NR:1xR � 1MR:1gR and 1MR:1xR ðsee eqns "3[1#Ð"3[3#Ł are not symmetric and therefore\ the
sti}ness matrix is not symmetric as well[ Only for small elastic strains the symmetry of these
operators is achieved "see also Schieck and Stumpf\ 0886#[

In the eighth step\ the geometric part of the sti}ness matrix is added[ For this purpose didjgR and
didjxR must be determined in each Gaussian integration point[ This can be performed in analogy
to the computation of digR and dixR in the _fth step\ starting with eqns ðI"2[19#Ł and ðI"2[10#Ł and
replacing there the symbols d and D by di and dj\ respectively[ Again\ one has to apply the assumed
strain method of Section 5I\ also to didjg according to eqn ðI"2[19#1Ł[ It must be the same procedure
as for g and dig[ The geometrical part of the incremental virtual work DIVW "eqn ðI"3[01#Ł# is then
added as

STMij M STMij¦gA

"NR = didjgR¦MR = didjxR# dA[ "3[8#

This contribution is symmetric[ For pressure loads the expression

STMij M STMij¦gA

p 0
1djv

1X0
×

1x

1X1bz�9

¦
1x

1X0bz�9

×
1djv

1X11 = div dA "3[09#

has to be introduced\ which is not symmetric[ Only for suitable boundary conditions there exists
a potential for the pressure load\ and then the asymmetries of eqn "3[09# vanish in the global
sti}ness matrix[ This then allows one to symmetrize the contributions of the pressure loads to the
element sti}ness matrix[ The expressions for 1djv:1X0 and 1djv:1X1 can be obtained from the _rst
two columns of djF�=z�9[ They are the variations of F�=z�9 due to the variation of the j!th dis!
placement degree!of!freedom in the element[

The ninth and last step consists of adding the contributions from the extension terms DXVW of
the incremental virtual work "eqn ðI"3[02#Ł# to the sti}ness matrix[ These terms correspond to the
terms 3Ð7 of eqn "3[4# and are derived from eqn ðI"3[02#Ł as

STMij M STMij¦gA

""djtF�=z�9¦tdj9v# = dil
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¦"ditF�=z�9¦tdi9v# = djl¦"djtdi9v¦ditdj9v# = l

¦ðdih tr"djF
"2×2#
�=z�9F"2×2#−0

�=z�9 #¦djh tr"diF
"2×2#
�=z�9F"2×2#−0

�=z�9 #Ł det F"2×2#
�=z�9

¦hðtr"diF
"2×2#
�=z�9F"2×2#−0

�=z�9 # tr"djF
"2×2#
�=z�9F"2×2#−0

�=z�9 #

−tr"diF
"2×2#
�=z�9F"2×2#−0

�=z�9 djF
"2×2#
�=z�9F"2×2#−0

�=z�9 # det F"2×2#
�=z�9 Ł# dA[ "3[00#

If the contributions due to eqn "3[5# are added to the residual force vector\ the expression

STMij M STMij−gA 6
0[1
GH

djl = Uf1
"9#dil=t9 =1¦

0
EbH

djhdih7 dA "3[01#

must be introduced into the sti}ness matrix in order to enable the condensation of the Lagrange
multipliers l and h[

4[ Numerical examples

Convergence tests within the linear and nonlinear solutions performed with the presented _nite
element have already been discussed in Part I[ For this purpose the hemispherical shells already
calculated by MacNeal and Harder "0874# and Simo et al[ "0889# have been analyzed[ It was
shown that the element performs well[ The application of our proposed assumed strain method 1
has shown better results for coarse meshes than the assumed strain methods of Bathe and Dvorkin
"0875#\ Huang and Hinton "0875# and Huang "0876a\ b#[

4[0[ ElasticÐplastic tension of a strip

As _rst example the elasticÐplastic tension of the strip recently investigated by Miehe "0887b# is
analyzed[ The geometry is given by the length L � 06[67 mm\ the width B � 02[434 mm and the
thickness H � 0[9 mm[ As a small imperfection the width in the middle of the strip is reduced by
9[9114 mm at both sides[ Due to the symmetry only a quarter of the specimen is discretized[ The
material is characterized by a saturation!type isotropic hardening model with a yield stress accord!
ing to the function

ty � ty9¦hop¦"y�−ty9#"0−exp"−hop## "4[0#

where

op �X
1
2 gt

l¾ dt "4[1#

is the integrated plastic equivalent strain with l¾ according to eqn "1[23#[ The material constants
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Fig[ 0[ ElasticÐplastic tension of a strip with symmetric width reduction as imperfection[

and the loadÐdeformation curves for various regular meshes are presented in Fig[ 0 and the
corresponding deformation modes are shown in Fig[ 1[ One can easily recognize the shear!band!
like localizations of the deformation\ which were obtained for su.ciently _ne meshes[ The shear!
bands always begin at the locations of the imperfections and have an inclination of about 44>[
Because of the symmetry of the imperfections on both sides of the specimen the shear!bands form
a double!cross[ Miehe "0887b# used a 09×19 mesh with brick!type eight!node shell elements
without obtaining shear!bands[ Such an element is equivalent to a four!node quadrilateral shell
element\ which typically represents only an incomplete linear "i[e[ mainly constant# deformation
mode[ The eight!node shell element of the present paper can describe complete bi!linear defor!
mation modes with some quadratic enrichments and therefore it produces better approximations\
in general[

In Figs 2 and 3 the loadÐdeformation curve and the deformation modes are shown for the same
sample with a thickness reduction of 4) for the element in the center as imperfection instead of
the width reduction[ For the material with nonlinear hardening as in Fig[ 0 only a double shear!
band evolves[ For material with constant hardening ET � 9[4 MPa "which is approximately the ET

of the nonlinear hardening material for op � 04)# only a di}use necking occurs "Fig[ 3#[
The macro shear!bands of Figs 1 and 3 can be observed in strip tension experiments and are

triggered by a small imperfection in combination with decreasing plastic hardening[ They can be
analyzed also by admitting weak discontinuities of the plastic deformation rate on singular lines
and deriving the acoustic tensor "see e[g[ Le et al[\ 0887#[ Points su}ering a little bit more
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Fig[ 1[ Tension of a strip with symmetric width reduction as imperfection] deformations at about u � 3 mm elongation
for half specimen[

Fig[ 2[ ElasticÐplastic tension of a strip with central imperfection] "a# saturation!type hardening^ "b# linear hardening[
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Fig[ 3[ ElasticÐplastic tension of a strip with central imperfection] deformations for linear and saturation!type hardening[

plasti_cation than their neighboring points react weaker than their surrounding[ This e}ect grows
rapidly with increasing plastic deformation and enables then the formation of macro shear!bands[
Therefore\ the specimen with constant hardening does not develop macro shear!bands[

4[1[ ElasticÐplastic de~ection of a square plate

Next we consider the elastoplastic deformation of the dead!loaded\ simply supported thin square
plate investigated by Bu�chter et al[ "0883# and Miehe "0887b#[ The plate has an edge length of 497
mm and a thickness of 1[43 mm[ The coe.cients of the ideal plastic material\ the loadÐde~ection
curves for various meshes without and with adaptation "A# and the _nal deformation picture are
presented in Fig[ 4[ Up to a deformation of 11 mm all solutions coincide[ For further increasing
deformations folds develop at the corners that require more re_ned meshes[ With a uniform 13×13
mesh or a non!uniform 05×05 discretization mesh convergence is obtained[

4[2[ Scordelis!Lo roof

The Scordelis!Lo roof is a frequently used sensitive benchmark problem for shell elements[
Recently\ Roehl and Ramm "0885# and Brank et al[ "0886# presented interesting new results for
this elasticÐplastic buckling problem and its post!buckling behavior[ Although this example
accounts only for small strains it is analyzed here to check the performance of our proposed eight!
node shell element[ Material data\ geometry\ reference load and boundary conditions are given in
Fig[ 5[ According to the symmetry\ only a quarter of the shell is discretized[ The results of our
computations are depicted in Figs 5 and 6\ and they are compared with those of the above
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Fig[ 4[ Simply supported\ dead!loaded square plate[

Fig[ 5[ Scordelis!Lo roof] geometry\ material\ load\ boundary condition and deformation modes[
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Fig[ 6[ Scordelis!Lo roof] de~ections at point 0 on the free edge[

mentioned authors[ Roehl and Ramm "0885# applied various continuum and shell elements\ where
the continuum and most of their shell elements led to the deformation mode C\ while they obtained
deformation mode D with a 4!P model "6 PSI#[ With our eight!node shell element we have obtained
the buckling mode D for a su.ciently _ne element grid[ A 02×02 or more coarse discretization
produces the {folded| mode C\ while a 03×03 or _ner mesh yields the {double wrinkled| mode D[
Further mesh re_nement\ e[g[ 13×13 eight!node elements of the present paper\ con_rms the result
of Brank et al[ "0886# obtained by 49×49 four!node elements[ Obviously\ the 01×01 discretization
of Roehl and Ramm "0885# using their four!node seven!parameter shell element is too coarse\
however\ in combination with their eight!node _ve!parameter element it is _ne enough to produce
the solution with the {double wrinkled| mode D[

4[3[ Fixed!end torsion of a moderately thick cylinder

The next example discussed here is the _xed!end torsion of a moderately thick cylindrical shell
with large strain elasticÐplastic deformations "Fig[ 7#[ Length L and radius R of the cylinder are
chosen to be equal and the thickness H is 09) of the radius[ One end of the cylinder is clamped[
The other end\ which is twisted\ is sti}ened by a ring with a length of L:7\ with a thickness of 1H
and with a Young|s modulus of 099 times the Young|s modulus E of the shell material and with
in_nite yield stress[ Additionally\ the rotations around the peripherical line of the ring and its
displacement in the axial direction are suppressed[ In Fig[ 7 the buckled cylinder and the cor!
responding dimensionless loadÐdisplacement curves are plotted for di}erent ratios b of kinematic
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Fig[ 7[ Fixed!end torsion of a cylinder] buckled shell and loadÐdisplacement curves for di}erent ratios b for kinematic
to isotropic hardening[

to isotropic hardening for the given material with E � 19ty\ where ty is the initial uniaxial yield
stress and with ET � 9[377ty as a plastic tangent modulus[ The _rst kink in the curves of Fig[ 7 is
due to the appearance of yielding and the next kinks result from plastic buckling[ One can clearly
recognize the in~uence of the kinematic hardening ratio b on the buckling load and on the post!
buckling behavior[

The torque has been applied by one force vector for each quarter of the cylinder acting in a
tangent direction on the sti}ened ring[ The buckling modes have been calculated without the help
of additionally introduced imperfections[ By a coarse calculation for the whole cylinder it has been
checked _rst that for the given geometry only four buckling waves occur[ Then a detailed re_ned
analysis has been performed only for a quarter of the cylinder periphery using appropriate coupling
conditions at the sides[ Therefore\ the meshes indicated in Figs 7 and 8 refer to a quarter of the
cylinder[ Due to the low ratio of E:ty the elastic strains are moderately large here[ The plastic
strains become really very large due to the large angle of twist[

In Fig[ 8 the mesh convergence is tested for b � 9[5[ One can see that eight elements for a quarter
of the circum~ex are enough\ but that a mesh re_nement in the length direction increases the
accuracy[ However\ in the post!buckling range even the 7×7 mesh is only about 4) sti}er than
the 05×21 mesh[ Concerning the maximum load\ the di}erences are much smaller[ For b � 9 and
b � 0 the behavior is similar[

In the far post!buckling range of deformation frequently {plastic oscillations| occurred during
the NewtonÐRaphson iterations[ This fact results from an unstable chaotic behavior of the iter!
ations induced by the switch of integration points between plastic and elastic behavior[ Applying
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Fig[ 8[ Fixed!end torsion of a cylinder^ mesh convergence[

a reasonable damping factor the oscillations can be suppressed for a large range of deformation
allowing to keep the relative norm of the increments in the convergence condition near 09−2[ The
relative norm is related to the Euclidean norm of the _rst increment in a new loadÐdisplacement
step[

Figure 09 presents the loadÐdisplacement curves for the same material but with other Young|s
moduli\ ranging from 1[4 times the initial yield stress "E � 1[4ty# to 0999 times "E � 0999ty# like
it is typical for metal plasticity[ In order to restrict the computational demand\ only an 7×7 mesh
for a quarter of the cylinder was applied[ According to the previous investigations "see Fig[ 8# the
maximum loads are predicted nearly exactly and in the post!buckling range the expected di}erences
in the loads are less than 4)[

In the case of a very weak material with E � 1[4ty the buckling occurs before yielding[ This can
be recognized by the smooth divergence of the elasticÐplastic solution from the purely elastic one[
For E � 4ty buckling and plasti_cation occur simultaneously\ which can be seen by the strong
kink in the elasticÐplastic solution and the weak kink between the elastic pre!buckling solution
and the continuation of the purely elastic load path[ In the regions\ where the load increases with
the deformation\ the buckling waves have always very small amplitudes[ After reaching the
maximum load the buckling waves grow rapidly and become extreme[ The computations were
stopped\ when in the trial deformation states during the iterations negative principal stretches
occurred as a result of too strong bending inside the buckling waves[

For strong material with E � 09ty\ E � 19ty and E � 0999ty "which is typical for metal plasticity#
yielding occurs before buckling[ The buckling mode also evolves rather weakly at the beginning\
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Fig[ 09[ Fixed!end torsion of a cylinder] in~uence of the ratio Young|s modulus E to initial yield stress ty[

which can be observed only as a _rst smooth curvature in the previously straight loadÐdisplacement
curve after the _rst yielding[ In the regions where the load decreases with increasing deformation\
the buckling waves grow rapidly and the computations were stopped during the NewtonÐRaphson
iterations\ when negative principal values of the stretches appeared[

5[ Conclusions

A shell theory and an associated eight!node C9 shell _nite element for elasticÐplastic material
behavior are presented[ The main features of the element can be brie~y summarized as follows]

"0# The kinematic and constitutive concept is based on the model of _nite elastoplasticity proposed
in Schieck and Stumpf "0884#[

"1# Reference con_guration for the shell is a ~at\ rectangular plate allowing the application of
plane stresses[

"2# The eight!node shell element has three displacement and three director degrees!of!freedom at
each node\ which enable us to connect easily various components of engineering structures[

"3# Elastic and plastic strains are allowed to be _nite[
"4# Isotropic and kinematic hardening is taken into account[
"5# An improved assumed strain technique is proposed[
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"6# To our numerical experience so far the shell element is locking!free and does not exhibit
spurious modes[

"7# A wide range of numerical examples is analyzed including problems with bending strain
localization and shear!band localization[ The results are compared with those published in the
literature\ as far as such are available[

"8# The numerical examples show the good performance of the proposed shell element for the
analysis of engineering structures[
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